Concurrent programming on the web with
Webstream

Theodore W. Hong and Keith L. Clark
Department of Computing
Imperial College of Science, Technology, and Medicine
180 Queen’s Gate, London SW7 2BZ, United Kingdom
Tel +44 20 7594-8233 / Fax +44 20 7581-8024
{twhl,klc}@doc.ic.ac.uk

December 4, 2001

Abstract

We describe Webstream, a language to simplify the development of
client-side web applications, particularly web-aware information agents.
Webstream encapsulates web documents as streams of messages pass-
ing between concurrent lightweight threads, permitting operations to
be carried out lazy-evaluation style while documents are in the pro-
cess of being retrieved. Streams can be pipelined through filters which
perform transformations such as parsing raw text into HTML tags, ex-
tracting subset streams based on arbitrary computable patterns within
tags or regular expression-like sequences of tags, and combining or
splitting streams in various ways. These facilities allow the easy con-
struction of a wide variety of web applications such as crawlers, meta-
search engines, and information extraction agents.

Keywords: web programming, agents, information extraction
Approximate word count: 3000 words

1 Introduction

The world-wide web is usually regarded as a large collection of multime-
dia information resources. However, it is also increasingly becoming a rich
computation environment in its own right, supporting a diverse software
ecology of programs whose native domain of operation is the reading, pro-
cessing, and writing of web information resources. Such programs include

www.manaraa.com



web crawlers, meta-search engines, comparison shopping agents, personal
newspaper agents, and more. Web resources themselves have grown in scope
from simple static collections of files to dynamic database queries, gateways
to other applications like email or multimedia streams, and interfaces to
server-side computations.

Computation on the web is similar in many ways to computation on
files or objects: web resources can be read or queried and can point to one
another. However, web resources also have their own special characteristics;
notably that they are accessed over a wide-area network, and that they
typically follow particular structural conventions. Wide-area network access
entails issues of latency and reliability. It often takes a long time to send
data over the network, and error conditions are common, making retrieving
web resources more complex. On the other hand, many web resources are
structured HTML documents, making them easier to process than free text.

Webstream is a web programming language designed to address these
issues and simplify the development of web applications, particularly web-
aware information agents. It is implemented as an extension layer on the
April agent programming language and can be used either on its own or to
add web capabilities to April agents. Programming in Webstream uses a
paradigm of streams and pipelines which permits a high degree of concur-
rency to maximize throughput in the face of network latency. Webstream
also provides a rich set of components to parse and process HTML doc-
uments, including sequence and pattern matching facilities. Furthermore,
data from multiple sources can be easily merged, split, and rearranged in a
variety of ways. A wide variety of web applications can be quickly written
in Webstream using only a small amount of code.

In section 2, we give a general overview of the Webstream architecture,
including discussion of its pipeline paradigm and some relevant features of
the underlying April language. Section 3 lists the various pipeline compo-
nents and composition operators in detail, while section 4 presents an an-
notated sample application, a multithreaded web crawler. Section 5 reviews
related work, and section 6 concludes.

2 Webstream architecture

2.1 April

Webstream is built on top of the April agent programming language. April[4]
is a distributed language based on a paradigm of cheap forking of a large
number of mobile interacting processes that communicate via asynchronous

www.manaraa.com



message passing. A collection of April processes has a natural correspon-
dence to a system of autonomous agents which can maintain private state,
deliberate, move from place to place, and communicate with other agents.
April processes are identified by handles which can be used to deliver mes-
sages to agents anywhere on the network. These messages can contain data
ranging from atomic symbols to tuples and lists to function and procedure
closures. Complex symbolic structures can be represented using arbitrar-
ily nested tuples and lists and processed using pattern matching. Closures
permit easy code mobility at any scale, from dynamic exchange of methods
between objects to migration of a full agent and state between machines.

Each April process has an incoming message queue. It reads messages
from the queue with a choice statement, consisting of a set of guarded com-
mands of the form:

receive {
message_pattern_1 :: test ->> action
I

message_pattern_2...

}

During execution, the process tests each queued message in turn against
the patterns in the choice statement. If a message matches and the optional
test succeeds, the process will execute the corresponding action and consume
the message. The test is a general expression which can test values in the
incoming message, examine state variables, send and receive messages, or
execute arbitrary code. If none of the pending messages match, they stay in
the queue and the process suspends until a timeout occurs or more messages
arrive, at which time the queue is examined again from the beginning.

2.2 Streams and pipelines

Webstream represents web documents as streams of messages passing be-
tween April processes. A stream is created when a data source process
initiates a download of a web page. As the document’s data is downloaded,
the process sends out messages carrying incremental blocks of retrieved data.
These message streams are operated on by filter processes that receive mes-
sages containing data, perform some transformation, and send on messages
containing the results. Filters provide operations such as parsing raw text
into HTML tags, extracting substreams based on arbitrary computable pat-
terns within tags, extracting regular expression-like sequences of tags, and

www.manaraa.com



combining or splitting streams in various ways. Typically, several such filters
or other components will be chained in series in a pipeline.
Here is an example of a Webstream pipeline:

get_url("http://www.yahoo.com/") |> tags() |> elems("a"
|> head(5) [|>>;

An application executing this pipeline will fork its components as procedure
calls executing in concurrent April processes. Components are joined by
the |> operator, which directs messages from the process on its left to the
process on its right.

The pipeline begins with a get_url data source which retrieves data
from a webserver using HT'TP. The raw text stream is then parsed into a
stream of HTML tags by the tags filter. Next, the data passes through two
selection filters: elems, which selects tags of a given type, and head, which
outputs the initial portion of its input. Finally, the pipeline terminates with
|>>, which sends its output back to the parent application. (See Figure 1
for an illustration.) The overall effect of this sequence is to extract the first
five anchor tags from Yahoo.

The usefulness of the pipeline paradigm is its ability to easily express
arbitrary combinations of components from a standard toolbox. Further,
since messaging is asynchronous, all of the components in a pipeline can ex-
ecute in parallel with one another and with the page download. This permits
answers to be produced at the tail of the pipeline while data is still being
fed in at the head, in a manner similar to lazy evaluation. In this example,
the first five anchors might be identified and sent back before the web page
is completely downloaded. By contrast, most other web programming lan-
guages require documents to be downloaded in full before processing begins.
Multiple pipelines downloading different pages can also execute concurrently
with each other. Since web downloads often have long latencies, significant
performance benefits can result.

3 Components

Webstream provides a toolbox of basic components for creating and pars-
ing data streams, extracting tags and sequences of tags, and splitting and
combining streams in various ways.

www.manaraa.com



user application
o / \

geturl | ——> tags —_—> elems ——> | headw

first five:

(a, [ (href,..)])
<p align=left> (p, [ (align,left)]) (a, [ (href,.)])
5 <a href="."> (a, [ (href,..)1)
Yahoo! (text, [ (content, ".."])

www.yahoo.com

Figure 1: A sample pipeline. As the messages in the stream pass through
the pipeline, they are transformed from lines of raw text to parsed tag
structures consisting of pairs of tag types and attribute-value lists and then
filtered twice.

3.1 Data sources

get_url and post_url create new streams from URLs by initiating an
HTTP connection and requesting the document using the GET or POST
methods, respectively. They take as arguments a URL to retrieve and (for
post_url) a set of attribute-value pairs.

-- send GET request for New York Times front page
get_url("http://www.nytimes.com/") ;

-- send POST request to Yahoo stock quote service

-- set parameter "s" (stock symbol) to IBM

-- set parameter "d" (quote type) to 5-day chart
post_url("http://quote.yahoo.com/q", [("s","IBM"), ("d","5d")]);

www.manharaa.com




Protocol-dependent processing is performed on the HTTP response to
the Webstream request. For example, this might involve re-requesting data
which has moved to a different URL. The retrieved text is split into chunks
as it arrives and sent out in a stream of messages. Streams can also be
created from local files or resumed partway through a previously interrupted
download.

3.2 Parsing

tags parses a stream of unparsed HTML text into a stream of structures
representing tags. Each tag is represented as a pair of the tag’s type and
a list of its attributes and their values. Free text appearing between tags
is converted to a special tag type, text, having a single content attribute
whose value is the corresponding literal text. A typical usage might be:

-- parse New York Times home page
get_url("http://www.nytimes.com/") |> tags() [>>;

3.3 Selection

elems filters a stream of tags, selecting tags matching a given type. elemset
does the same for tags belonging to a set of types. (Note that the examples
shown here and in the following subsections are fragments; for clarity, the
full pipelines have been omitted.)

—-- select anchor tags
...> elems("a") [>...

-- select applets and images
...|> elemset(["applet", "img"]l) [>...

pats selects tags matching a given pattern specified by a boolean func-
tion closure. This function is applied to each incoming tag, and those yield-
ing true are selected. Any April code fragment returning a boolean value
can be used, which might perform arbitrary computations, send and receive
messages, or even spawn subsidiary pipelines. For example, pats might used
in conjunction with elems and an appropriate function closure to select the
broken links in a document:

—-- select broken links
...|> elems("a") |> pats(broken) |[>...

where broken is a function defined separately that extracts URLs from an-
chor tags and attempts to retrieve them using a second pipeline.

www.manaraa.com



head, drop, and tail select the first IV, all but the first N, or the last
N tags, respectively:

—-- skip the first 10 tags
... > drop(10) [>...

3.4 Sequence extraction

grep searches a stream for contiguous non-overlapping sets of tags matching
a given regular expression on the alphabet of tag types. This filter is par-
ticularly useful for writing wrappers to extract information from web pages.
For example, the following pipeline:

—-- select table columns containing text with bold tags
... 1> grep("td text (b text /b text)* /td") [>...

would extract sequences such as:

<td>DarWilliams.com - the green version</td>
<td>A Little <b>Dar</b> <b>Williams</b> Page</td>
<td>Since 1995, <b>Dar</b> Web has been the flagship...</td>

Such sequences might appear in search results when search terms (here “Dar
Williams”) are highlighted. Performing this type of sequence matching is
a key part of information extraction applications like comparison-shopping
agents or meta-search engines.

3.5 Composition

Several operators are provided to compose pipelines together. The or opera-
tor combines two pipelines using OR-parallel semantics. In OR-parallelism,
the composite pipeline returns the data from whichever subpipeline succeeds
first. This behavior is useful when the sources queried provide redundant
mirrors of the data wanted and either will do.

-- choose fastest mirror site (US or Ireland)
get_url("http://www.cpan.org/") or
get_url("http://cpan.indigo.ie/") [>>;

The resulting pipeline waits for one of its input streams to start sending
data and then forwards that stream to its output, terminating the other.
AND-parallel semantics can be obtained by using sequential pipeline
statements. In AND-parallelism, the composite pipeline merges the data
from all of its subpipelines. This behavior is useful when the sources queried
provide different subsets of the data and their combination is wanted. Since

www.manaraa.com



pipeline statements return immediately after forking the appropriate pro-
cesses, a sequence of such statements will execute in parallel and all outputs
will be merged in the incoming message queue of the main process.

-- conduct parallel meta-search queries
get_url("http://www.google.com/search?q=april") [>>;
get_url("http://www.altavista.com/cgi-bin/query?q=april") |>>;

union, intersect, and diff merge pipelines according to the usual
set semantics. That is, union merges two pipelines with AND-parallelism
and removes duplicates. intersect selects messages which are received
from both pipelines, while diff operator selects those sent by its left-hand
argument but not its right-hand argument.

-- merge two bookmark files
(get_file("bkmarkl.htm") |> tags() |> elems("a"))
union (get_file("bkmark2.htm") [|> tags() [|> elems("a")) [>>;

Streams can also be split by giving a list of pipelines after a |> operator.
This causes each incoming message from the left-hand side to be multicast
to all of the pipelines on the right-hand side.

-- select first and last 10 tags
... > [head(10) [>>, tail(10) [>>];

4 Sample application: multithreaded web crawler

To give a flavor of what Webstream programs look like, we give an annotated
partial listing of a sample application, a multithreaded web crawler. (The
listing has been somewhat simplified to clarify the presentation.)

The program takes three parameters: an initial URL, a maximum num-
ber of pages to visit, and a maximum number of pipelines allowed to be
active at any one time (to limit resource consumption). It begins by initial-
izing its counters and starting a pipeline to extract the anchor tags from the
initial web page.

program {
main(initurl, maxpages, maxpipes) {
pages: 1;

pipelines: 1;

get_url(initurl) |> tags() |> elems("a") |>>;

www.manaraa.com



While there are pipelines still executing, the program loops over a message
receive statement.

while pipelines > 0 do {
receive {

An incoming tag is matched by the pattern wsio_tag(T), where T is a
variable that becomes bound to the tag. If the maximum number of pages
has not been reached and the number of active pipelines is below the limit,
the crawler prints the link, starts a new pipeline to follow it, and increments
the page and pipeline counters.

wsio_tag(T) :: pages < maxpages
&& pipelines < maxpipes ->> {

new_url = extract_href(T);
new_url ++ "\n" >> stdout;
get_url(new_url) |> tags() |> elems("a") [>>;

pages := pages + 1;
pipelines := pipelines + 1;

3

The pipeline counter is decremented when a pipeline finishes, sending a
wsio_end message.

| wsio_end —>> {
pipelines := pipelines - 1;

3

If a tag arrives but the page limit has been reached, the program just prints
the link without starting a new pipeline.

| wsio_tag(T) :: pages >= maxpages ->> {
new_url = extract_href(T);
new_url ++ "\n" >> stdout;

3

Finally, if the page limit has not been reached but there are too many
pipelines executing already, the message will not satisfy any of the message
receive tests and will be left in the queue. The main process then suspends
until the next message arrives, at which time it will recheck its message
queue from the beginning. When a pipeline slot becomes available, the
deferred link will be picked up and processed.

www.manharaa.com




X
b

} execute main;

The crawler terminates when the specified maximum number of pages have
been retrieved or no more links can be found and all pipelines are finished.

During execution, many pipelines will be concurrently downloading dif-
ferent pages and extracting their links. The outputs of these pipelines are
all merged in AND-parallel in the crawler’s message queue, as described in
section 3.5. This means that the crawler does not have to wait for any single
request to complete, but can eagerly follow links from any of the active re-
quests as they progress, reducing the time spent waiting for dead links. The
resulting crawl can be regarded as as a breadth-first traversal where links
from pages closer to the user in terms of latency are followed first.

5 Related work

One of the first descriptions of the web as a computation environment was
given by Cardelli and Davies[3]|, who described some of the features of the
web computing model and the characteristics that a web programming lan-
guage might need. They introduced the notion of service combinators, op-
erators that can be used to build complex control structures from primitive
page retrieval actions. Combinators include sequential or concurrent execu-
tion, timeout, and repetition, and can be used to model various web brows-
ing activities and strategies. Webstream’s pipeline composition operators
perform an analogous function.

The service combinator concept was implemented by WebL[6], a Java-
based scripting language which has similar capabilities to Webstream. WebL
also provides a markup algebra for processing retrieved web pages. Operators
in the markup algebra create and manipulate pieces, contiguous regions of
text within a page. For example, all the tables or all the occurrences of
some fixed sequence could be turned into piece-sets. Other operators create
derived sets, such as the set of pieces in one set which completely contain
pieces in another set. Webstream’s filter operators have greater expressive
power and can specify a wider range of sets.

Another language for processing web pages is Editor[1], a text manipula-
tion language which uses word processor-like “cut and paste” operations to
rewrite pages. Editor programs can act as wrappers for web pages, provid-
ing extraction methods that return various values sifted from within HTML

10

www.manaraa.com



source code. This is used as the basis for applying a relational database
abstraction to the web in Araneus[2]. The language is quite low-level, ori-
ented towards searching and replacing individual tokens, and programs in
it are rather cumbersome. Neither Editor nor WebL provide concurrency
between downloading and processing, requiring instead that documents be
completely retrieved before processing begins.

LogicWeb[5, 7] is an interesting effort to apply a declarative, rather
than procedural, abstraction to the web. Web pages are retrieved us-
ing the download/4 logical predicate, which incrementally binds one of its
arguments to a term representing the data as it arrives. By combining
download/4 with concurrent logic programming constructs, activities such
as switching a request to a mirror site or repeating a request until it suc-
ceeds can be expressed. Once downloaded, a page is converted into a small
logic program that is a collection of clauses representing facts about it, such
as its title or a list of its links, plus any clauses explicitly added by the
page’s author using special LogicWeb markup tags. These facts can then be
used as a knowledge base context for satisfying goals, for example to search
for a page on a given subject. However, the conversion predicate is limited
to enumerating tags of different types (links, images, etc.) and does not
provide support for general parsing.

Web libraries have also been developed for existing general-purpose lan-
guages. Compared to these libraries, Webstream generally provides a more
concise and higher-level abstraction over web programming operations. For
example, a C program using the 1ibwww library takes dozens of lines just
to initialize the interface and download one web page, where Webstream
needs only a single pipeline statement. The web crawler program described
in section 4 takes about 40 lines of code, excluding comments and blank
lines, while a comparable Java program that performs the same task us-
ing the java.net and javax.swing.text.html libraries takes around 100
lines and requires careful synchronization coding. More importantly, these
libraries do not have the capacity for agent programming integration that
Webstream does, or the support for sequence and pattern matching on tags
needed by information extraction applications.

6 Conclusion

Webstream is a new programming language intended to simplify the devel-
opment of client-side web applications. It is designed to address the spe-
cial characteristics of computation on the web such as network access and

11

www.manaraa.com



structural conventions. Webstream’s concurrency and lazy pipeline evalua-
tion greatly increase the efficiency of web applications such as crawlers and
meta-search engines. It also provides a rich set of operators for parsing,
transforming, and extracting data from web documents that are useful for
information extraction applications. Using the pipeline concept, these op-
erators can be arbitrarily composed in simple yet powerful ways. Combined
with its integration with the April agent programming language, Webstream
provides a useful platform for easily constructing a wide variety of web ap-
plications.

References

[1] P. Atzeni and G. Mecca. Cut and paste. In Proceedings of the Siz-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 144-153. ACM Press, 1997.

[2] P. Atzeni, G. Mecca, and P. Merialdo. Semistructured and structured
data in the web; going back and forth. SIGMOD Record, 26(4):16+,
Dec. 1997.

[3] L. Cardelli and R. Davies. Service combinators for web computing. Re-
search Report 148, DEC SRC, June 1997.

[4] K. L. Clark and F. G. McCabe. April—agent process interaction lan-
guage. In M. Wooldridge and N. Jennings, editors, Intelligent Agents,
pages 324-340, Berlin, 1995. LNAI 890, Springer-Verlag.

[5] A. Davison and S. W. Loke. A concurrent logic programming model
of the web. Technical Report 98/28, Dept. of Computer Engineering,
Prince of Songkla University, 1998.

[6] T. Kistler and H. Marais. WebL — a programming language for the web.
Computer Networks and ISDN Systems, 30:259-270, 1998.

[7] S. W. Loke and A. Davison. LogicWeb: Enhancing the web with logic
programming. The Journal of Logic Programming, 36:195-240, 1998.

12

www.manaraa.com



